M.V. STOROZHUK, S.I. IVANOVA (2020) 'PLASTICITY OF GABAERGIC SYNAPTIC TRANSMISSION' in O.A. Krishtal, E.A. Lukyanetz (Eds.), ESSAYS ON NEUROPHYSIOLOGY BY PLATON KOSTYUK AND HIS STUDENTS, AKADEMPERIODYKA, pp. 272-278
PLASTICITY OF GABAERGIC SYNAPTIC TRANSMISSION
M.V. STOROZHUK1, S.I. IVANOVA2
- Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine;
- International Center of Molecular Physiology, Ukraine
DOI: https://doi.org/10.15407/biph.books.EssNeur.272

Abstract
GABAergic synaptic transmission plays a crucial role in inhibitory neurotransmission and is subject to modulation by various factors, including acetylcholine and short-term plasticity mechanisms. This study explores both presynaptic and postsynaptic contributions to the modulation of GABAergic transmission in hippocampal and neocortical neurons. Acetylcholine was found to exert modulatory effects not only through presynaptic mechanisms but also by postsynaptic modulation of GABA-induced currents. Additionally, short-term plasticity of GABAergic transmission following tetanic stimulation (30 Hz, 4 s) resulted in either posttetanic potentiation (PTP) or posttetanic depression (PTD), depending on the presynaptic neuron type. PTP was associated with lower initial release probability and greater IPSC variability, while PTD was linked to high release probability. Further, depolarization-induced suppression of inhibition (DSI) was observed in a subset of neuronal connections, indicating another layer of short-term modulation. These findings highlight the heterogeneity of presynaptic neurons in shaping synaptic plasticity and provide insight into the mechanisms underlying dynamic regulation of inhibitory neurotransmission.
Keywords:
GABAergic transmission, synaptic plasticity, acetylcholine modulation, hippocampal neurons, neocortical neurons, posttetanic potentiation (PTP), posttetanic depression (PTD), depolarization-induced suppression of inhibition (DSI), presynaptic mechanisms, postsynaptic modulation, IPSC variability, calcium buffering, L-type calcium channels.
References
- Billups B, Forsythe ID, 2002. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22: 5840-5847.
CrossRef
PubMed PubMedCentral
- Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A, 2003. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38: 79-88.
CrossRef
PubMed
- Cannon WB, 1937. Wisdom of the Body. W. W. Norton, New York.
- Cherubini EF, Conti F, 2001. Generating diversity at GABAergic synapses. Trends Neurosci.
CrossRef
PubMed
- David G, Barrett EF, 2003. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548: 425-438.
CrossRef
PubMed PubMedCentral
- Davis GW, Bezprozvanny I, 2001. Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 63: 847-869.
CrossRef
PubMed
- Freund TF, Buzsaki G, 1996. Interneurons of the hippocampus. Hippocampus 6: 347-470.
CrossRef
- Galante M, Nistri A, Ballerini L, 2000. Opposite changes in synaptic activity of organotypic rat spinal cord cultures after chronic block of AMPA/kainate or glycine and GABAA receptors. J Physiol 523: 639-651.
CrossRef
PubMed PubMedCentral
- Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ, 2004. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24: 11368-11380.
CrossRef
PubMed PubMedCentral
- Gupta A, Wang Y, Markram H, 2000. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273-278.
CrossRef
PubMed
- Ivanova SY, Kostuyk PG, 2004. Chronic treatment with GABAa receptor antagonist bicuculline increases efficacy of GABAergic synaptic transmission in rat hippocampal cell cultures. Physiol Zhurnal 50: 10-15.
- Jensen K, Jensen MS, Lambert JD, 1999a. Post-tetanic potentiation of GABAergic IPSCs in cultured rat hippocampal neurons. J Physiol 519: 71-84.
CrossRef
PubMed PubMedCentral
- Jensen K, Jensen MS, Lambert JD, 1999b. Role of presynaptic L-type Ca2+ channels in GABAergic synaptic transmission in cultured hippocampal neurons. J Neurophysiol 81: 1225-1230.
CrossRef
PubMed
- Jensen K, Mody I, 2001. L-type Ca2+ channel-mediated short-term plasticity of GABAergic synapses. Nat Neurosci 4: 975-976.
CrossRef
PubMed
- Kaplan MP, Wilcox KS, Dichter MA, 2003. Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture. Synapse 50: 41-52.
CrossRef
PubMed
- Kilman V, van Rossum MC, Turrigiano GG, 2002. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J Neurosci 22: 1328-1337.
CrossRef
PubMed PubMedCentral
- Macdonald RLF, Olsen RW, 1994. GABAA receptor channels. Annu Rev Neurosci 17: 569-602.
CrossRef
PubMed
- Ohno-Shosaku T, Sawada S, Yamamoto C, 1998. Properties of depolarization-induced suppression of inhibitory transmission in cultured rat hippocampal neurons. Pflugers Arch 435: 273-279.
CrossRef
PubMed
- Sieghart W, 1995. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47: 181-234.
CrossRef
PubMed
- Storozhuk MV, Ivanova SY, Balaban PM, Kostyuk PG, 2005a. Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures. Synapse 58: 45-52.
CrossRef
PubMed
- Storozhuk MV, Ivanova SY, Piomelli D, 2005b. Presence of depolarization-induced suppression of inhibition in a fraction of GABAergic synaptic connections in rat neocortical cultures. Zh Vyssh Nerv Deiat Im I P Pavlova 55: 581-585.
- Storozhuk MV, Ivanova SY, Pivneva TA, Melnick IV, Skibo GG, Belan PV, Kostyuk PG, 2002. Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 323: 5-8.
CrossRef
PubMed
- Storozhuk MV, Melnick IV, Kostyuk PG, Belan PV, 2001. Postsynaptic mechanism may contribute to inhibitory acetylcholine effect on GABAergic synaptic transmission in hippocampal cell cultures. Synapse 41: 65-70.
CrossRef
PubMed
- Tang Y, Zucker RS, 1997. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18: 483-491.
CrossRef
PubMed
- Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N, 1999. Impairment of inhibitory synaptic transmission in mice lacking synapsin I4. J Cell Biol 145: 1039-1048.
CrossRef
PubMed PubMedCentral
- Turrigiano GG, 1999. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22: 221-227.
CrossRef
PubMed
- Turrigiano GG, Nelson SB, 2000. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10: 358-364.
CrossRef
PubMed
- Turrigiano GG, Nelson SB, 2004. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97-107.
CrossRef
PubMed
- Vreugdenhil MF, Jefferys JGF, Celio MRF, Schwaller B, 2003. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol 89: 1414-1422.
CrossRef
PubMed
- Zhang J, Berg DK, 2007. Reversible inhibition of GABAA receptors by alpha7-containing nicotinic receptors on the vertebrate postsynaptic neurons. J Physiol 579: 753-763.
CrossRef
PubMed PubMedCentral
|