PLASTICITY OF GABAERGIC SYNAPTIC TRANSMISSION

M.V. STOROZHUK¹, S.I. IVANOVA²

- ¹ Bohomolets Institute of Physiology, Ukraine
- ² International Center of Molecular Physiology, Ukraine maksim@biph.kiev.ua

Maksym Storozhuk a leading research scientist at the Department of General Physiology of Nerveous System at the Bohomolets Institute of Physiology, NAS of Ukraine, Kyiv. He received his Ph.D. in 1990 at the Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia (supervisor Dr. P.M. Balaban). Maksym Storozhuk worked: at the Department of general physiology of the nervous system, Bohomolets Institute of Physiology, Kyiv, Ukraine (1993-1994); Department of physiology, Meharry Medical College, Nashvill USA (1993-1994); Département de physiologie Universite de Montréal, Québec, Canada (1995-1998). During this time, he focused on research of modulation and plasticity of synaptic transmission in the CNS of invertebrates. Upon coming back to Kyiv, Maksym Storozhuk devoted his investigation to modulation and plasticity of GABAergic synaptic transmission between mammalian brain neurons. Since 2000 he has been a senior research scientist at the Department of general physiology of nervous system at the Bohomolets Institute of Physiology; in 2007 he received the degree of Doctor of Biological Sciences (supervisor Prof. P.G. Kostyuk).

Svitlana Ivanova: a research scientist at the International center of molecular physiology, NAS of Ukraine, Kyiv. She received her Ph.D. in 2004 from the Bohomolets Institute of Physiology, Kyiv, Ukraine (supervisor Prof. P.G. Kostyuk). Her thesis was devoted to investigation of plasticity of GABAergic synaptic transmission in cultured rat hippocampal neurons. Presently her scientific interest is investigation of modulation and plasticity of GABAergic synaptic transmission.

Modulation and short-term plasticity of GABAergic synaptic transmission

The suppressing effect of acetylcholine on GABAergic synaptic transmission mediated by presynaptic mechanisms has been well documented. According to our results (Storozhuk et al., 2001), postsynaptic mechanisms also substantially contribute to the modulatory effect of acetylcholine on GABAergic synaptic transmission, however, in a fraction of GABAergic connections in hippocampal cell cultures. Involvement of postsynaptic mechanisms in the modulatory effect of acetylcholine has been also reported more recently on hippocampal slices (Zhang and Berg, 2007). It is likely that the postsynaptic component of acetylcholine modulatory effect on GABAergic synaptic transmission is rather a general phenomenon, since modulation of currents evoked by exogenous GABA application was also observed in chick cilliary neurons.

Short-term plasticity of GABAergic synaptic transmission evoked by tetanic stimulation

We have found that in distinct pairs of neurons the same tetanic stimulation (30 Hz, 4 s) evokes either posttetanic potentiation (PTP) or posttetanic depresssion (PTD). This differential effect was observed in hippocampal (Storozhuk et al., 2002) and neocortical cell cultures (Storozhuk et al., 2005a). Since presynaptic mechanisms contribute to both PTP and PTD, we hypothesized that the differential effect of the tetanic stimulation is due to heterogenety of presynaptic neurons. To test this idea, we compared several properties of the connections belonging to the PTP and PTD groups. We have found that, on average, evoked IPSCs in the connections facilitated by the tetanization have smaller amplitudes and larger coefficients of variation (CV) of IPSC amplitude compared to the connections depressed by the tetanization. We also estimated quantal parameters for both groups assuming that transmitter release is reasonably described by a simple binomial distribution. We established that the background release probability (P) is substantially lower in the connections facilitated by tetanization (P \sim 0.5) than in the depressed connections (P \sim 0.9). and suggest that this difference may underlie the differential effect of the tetanization. We have also found that the tetanization induces opposite effects on connections made by distinct presynaptic neurons with the same postsynaptic cell (convergent connections) in the fraction of postsynaptic neurons studied. These results also support the idea that properties of the presynaptic neuron are of primary importance for the observed differential effect of tetanization. Crucial importance of the processes occurring in the presynaptic neuron for PTP of GABAergic transmission, in particular that of basal probability of release, Ca²⁺ buffering (Jensen et al., 1999a), entry of Ca²⁺ through L-type calcium channels have been previously demonstrated (Jensen et al., 1999b).

Moreover, PTP was turned in PTD in basket cell granular cell synapses in slices (Jensen and Mody, 2001), which suggests that differential expression of L-type calcium channels may be a cause for differential effect of the tetanization observed in our experiments. While contribution of this factor is quite likely to occur, this is probably not the only reason since we did not observe transformation of PTP to PTD in spite of the pronounced effect of nifedipine on PTP. The difference in probability observed in our experiments, in particular, may be due to differences in tonic activation of PTD connections and/or tonic inhibition of PTP connections. Although much of the variability in the basal probability of release is thought to arise from intrinsic properties of different classes of synapses, it has been recently demonstrated that unique properties of mossy fiber synapses are due to low probability of transmitter release which results from tonic action of extracellular adenozineadenosine acting on presyanaptic A1 receptors (Moore et al., 2003). It may be also suggested that the observed difference in probability of transmitter release somehow correlates with differential expression of calcium binding proteins in the GABAergic neurons. Indeed, diversity of interneurons in terms of expression of calcium binding proteins has been well documented (Freund and Buzsaki, 1996). A crucial role of parvalbumin (Vreugdenhil et al., 2003) and calbinding (Blatow et al., 2003) in use-dependent plasticity of GABAergic transmission has been recently demonstrated as well. Therefore, it seems to be an important issue for future studies to identify immunocytochemically presynaptic neurons with low and high probability of transmitter release.

It has been shown previously that mitochondria are of crucial importance *for* PTP at crayfish neuromuscular junction (Tang and Zucker, 1997). More recently, evidence indicating involvement of mitochondria in PTP at mammalian neuromuscular junction (David and Barrett, 2003) and in regulation of presynaptic calcium at the central glutamatergic terminals (Billups and Forsythe, 2002) has been reported.

However, lack of evidence for mitochondrial involvement in PTP at other synapses as well as for substantial differences between synapses raised several questions, in particular, whether mitochondria are involved in PTP at the central inhibitory synapses? We found that, indeed, mitochondria are involved in PTP at neocortical GABArgic synapses (Storozhuk et al., 2005a). Thus, involvement of mitochondria in this form of plasticity may be essential for many types of synapses.

Short-term plasticity of GABAergic synaptic transmission evoked by depolarization of postsynaptic neurons

Heterogeneity of GABAergic synapses can be also revealed by activation of postsynaptic neurons. Indeed, brief depolarization of postsynaptic neurons in hippocampus and cerebellum results in a transient depression of GABAergic inhibitory input, called "depolarization-induced suppression of inhibition" (DSI), phenomenon observed only in a fraction of synaptic connections (Ohno-Shosaku et al., 1998). We studied whether DSI is present in the rat neocortical networks (Storozhuk et al., 2005b). We found that the depolarization of postsynaptic neurons evokes suppression of IPSC amplitude in 6 out of 26 neuronal pairs tested which lasted for ~70 sec. The suppression of IPSC amplitude was accompanied by changes of paired-pulse ratio and IPSC coefficient of variation (CV), indicating involvement of a presynaptic mechanism in this phenomenon. Thus, our results are in agreement with previous observations in hippocampal and cerebellar synapses.

Homeostatic plasticity of GABAergic synaptic transmission

Cellular homeostasis is one of the most basic processes by which cells responds to a change in the intracellular or extracellular environment and maintains a constant physiology (Davis and Bezprozvanny, 2001). Many years ago, it was postulated that homeostatic mechanisms maintain an environment in which the brain can function normally, independently of fluctuations in the external environment (Cannon, 1937). More recently, it has become apparent that neural activity itself is subject to homeostatic regulation and this prevents neural circuits from becoming hyper- or hypoactive (Turrigiano and Nelson, 2004). It has been proposed to consider plasticity in neuronal network as occurring in two forms (Turrigiano, 1999; Turrigiano and Nelson, 2000): use-dependent plasticity which modifies the network properties, and homeostatic plasticity which to some extent counteract use-dependent changes. Without stabilizing mechanisms operating at the level of neural circuits, activity-dependent forms of plasticity such as longterm potentiation (LTP) and long-term depression (LTD) can drive neural activity towards runaway excitation or quiescence (Turrigiano and Nelson, 2004). In this regard, we studied effects of prolonged decrease (using sodium channel blocker TTX) and increase (using GABAA receptor antagonist bicuculine) of neuronal firing on GABAergic synaptic transmission.

It has been shown previously that prolonged block of neuronal activity results in decreasing synaptic inhibition in visual cortex (Kilman et al., 2002) and spinal cord neuronal networks (Galante et al., 2000). Our results indicate that similar changes also occur in hippocampal cell cultures. Indeed, we have shown that TTX-pretreatment decreases the amplitude of evoked IPSCs, decreasing thus the amount of inhibition in this neuronal network. A decrease of GABAergic transmission efficacy may occur, in particular, due to some postsynaptic changes, for instance as a result of decreased number of postsynaptic receptors or changes of GABAA-receptors properties (Macdonald and Olsen, 1994)

(Sieghart, 1995) (Cherubini and Conti, 2001). In our experiments, the decrease of IPSC amplitude induced by TTX pretreatment was accompanied by a pronounced increase in the IPSC cofficient of variation. Thus, our results suggest that changes of IPSC amplitude are at least in part due to a presynaptic mechanism. This suggestion can be supported by the results obtained earlier in cultured visual cortex neurons (Kilman et al., 2002). Indeed, with using immunocytochemical approach, it has been demonstrated that TTX treatment decreases staining for GAD65, the presynaptically localized isoform of the synthesis enzyme for GABA. This in turn suggests a decrease of GABA syntesis and perhaps a decrease of GABAergic synapse number. Further investigation is required to determine exact origin of this change. On the other hand, we cannot exclude a possibility that postsynaptic changes also contribute to induced by to TTX pretreatment decrease of GABAergic transmission efficacy in our experiments as it was observed in visual cortex neurons. In fact, TTX-treatment in the latter preparation decreased the amplitude of miniature GABAergic IPSCs and this effect was accompanied by a decreased number of postsynaptic reseptors (Kilman et al., 2002).

Therefore, a question of postsynaptic changes involvement in homeostatic regulation of GABAergic transmission should be further studied. In this regard, it is worth to mention our recent results concerning homeostatic changes of GABAergic transmission evoked by prolonged exposure to bicuculline in hippocampal cultures (Ivanova and Kostyuk, 2004). According to our results, acutely applied bicuculline and TTX produce opposite effects on neuronal firing in hippocampal cell cultures. Prolonged treatments with these drugs induce opposite changes of GABAergic synaptic efficacy. However, while bicuculline pretreatment drammatically increased evoked IPSC amplitude, it did not affect either IPSC coefficient of variation or paired pulse depression (Ivanova and Kostyuk, 2004). Thus, generally, both pre- and postsynaptic mechanism are likely to be involved in homeostatic regulation of GABAergic transmission in hippocampal networks.

Acknowledgements. We would like to thank sincerely Prof. P.G. Kostyuk for bright ideas for experiments and fruitful discussion of the results.

REFERENCES

Billups B, Forsythe ID, 2002. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22: 5840-5847.

Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A, 2003. Ca²⁺ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. — Neuron 38: 79-88. Cannon WB 1937 Wisdom of the body. W W Norton, New-York.

Cherubini EF, Conti F, 2001. Generating diversity at GABAergic synapses. — Trends Neurosci 24: 155-62.

- David G, Barrett EF, 2003. Mitochondrial Ca²⁺ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548: 425-438.
- Davis GW, Bezprozvanny I, 2001. Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 63: 847-869.
- Freund TF, Buzsaki G., 1996. Interneurons of the hippocampus. Hippocampus 6: 347-470.
- Galante M, Nistri A, Ballerini L, 2000. Opposite changes in synaptic activity of organotypic rat spinal cord cultures after chronic block of AMPA/kainate or glycine and GABAA receptors. J Physiol 523: 639-651.
- Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ, 2004. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24: 11368-11380.
- Gupta A, Wang Y, Markram H, 2000. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273-278.
- Ivanova SY, Kostuyk PG, 2004. Chronic treatment with GABAa receptor antagonist biculline increses efficacy of GABAergic synaptic transmission in rat hippocampal cell cultures. Physiol Zhurnal 50: 10-15.
- Jensen K, Jensen MS, Lambert JD, 1999a. Post-tetanic potentiation of GABAergic IPSCs in cultured rat hippocampal neurones. J Physiol 519: 71-84.
- Jensen K, Jensen MS, Lambert JD, 1999b. Role of presynaptic L-type Ca²⁺ channels in GABAergic synaptic transmission in cultured hippocampal neurons. J Neurophysiol 81: 1225-1230.
- Jensen K, Mody I, 2001. L-type Ca²⁺ channel-mediated short-term plasticity of GABAergic synapses. Nat Neurosci 4: 975-976.
- Kaplan MP, Wilcox KS, Dichter MA, 2003. Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture. Synapse 50: 41-52.
- Kilman V, van Rossum MC, Turrigiano GG, 2002. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J Neurosci 22: 1328-1337.
- Macdonald RLF, Olsen RW, 1994. GABAA receptor channels. Annu Rev Neurosci 17: 569-602.
- Ohno-Shosaku T, Sawada S, Yamamoto C, 1998. Properties of depolarization-induced suppression of inhibitory transmission in cultured rat hippocampal neurons. Pflugers Arch 435: 273-279.
- Sieghart W, 1995. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47: 181-234.
- Storozhuk MV, Ivanova SY, Balaban PM, Kostyuk PG, 2005a. Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures. Synapse 58: 45-52.
- Storozhuk MV, Ivanova SY, Piomelli D, 2005b. Presence of depolarization-induced suppression of inhibition in a fraction of gabaergic synaptic connections in rat neocortical cultures. Zh Vyssh Nerv Deiat Im I P Pavlova 55: 581-585.
- Storozhuk MV, Ivanova SY, Pivneva TA, Melnick IV, Skibo GG, Belan PV, Kostyuk PG, 2002. Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 323: 5-8.

- Storozhuk MV, Melnick IV, Kostyuk PG, Belan PV, 2001. Postsynaptic mechanism may contribute to inhibitory acetylcholine effect on GABAergic synaptic transmission in hippocampal cell cultures. Synapse 41: 65-70.
- Tang Y, Zucker RS, 1997. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18: 483-491.
- Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N, 1999. Impairment of inhibitory synaptic transmission in mice lacking synapsin I4. J Cell Biol 145: 1039-1048.
- Turrigiano GG, 1999. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22: 221-227.
- Turrigiano GG, Nelson SB 2000. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10: 358-364.
- Turrigiano GG, Nelson SB, 2004. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97-107.
- Vreugdenhil MF, Jefferys JGF, Celio MRF, Schwaller B 2003. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol 89: 1414-1422.
- Zhang J, Berg DK, 2007. Reversible inhibition of GABAA receptors by alpha7-containing nicotinic receptors on the vertebrate postsynaptic neurons. J Physiol 579: 753-763.