Українська English

BOOK REPOSITORY

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

The Book and Monograph Repository of the Bogomoletz Institute of Physiology NAS of Ukraine is an electronic archive dedicated exclusively to scientific books, monographs, and other fundamental works authored by the Institute’s researchers.

Our repository is designed to:

  • Provide open access to scientific knowledge
  • Preserve and promote scientific heritage
  • Support researchers, educators, and students in their studies
Browse, download, and use scientific publications for your research!

H.G. SKIBO, I. LUSHNIKOVA, I. NIKONENKO, D. MULLER (2020) 'STRUCTURAL PLASTICITY OF NEURONAL CELLS OF CA1 HIPPOCAMPAL AREA AFTER LONG-TERM SYNAPTIC POTENTIATION' in O.A. Krishtal, E.A. Lukyanetz (Eds.), ESSAYS ON NEUROPHYSIOLOGY BY PLATON KOSTYUK AND HIS STUDENTS, AKADEMPERIODYKA, pp. 64-69


STRUCTURAL PLASTICITY OF NEURONAL CELLS OF CA1 HIPPOCAMPAL AREA AFTER LONG-TERM SYNAPTIC POTENTIATION

H.G. SKIBO1, I. LUSHNIKOVA1, I. NIKONENKO1, D. MULLER2

  1. Department of Cytology, Bogomoletz Institute of Physiology, Ukraine
  2. Department and Center of Neuroscience, Geneva University Medical Center, Switzerland
DOI: https://doi.org/10.15407/biph.books.EssNeur.064


Abstract

Excitatory dendritic spine synapses are extremely dynamic structures which change their functioning and morphology with activity and under pathological conditions (Yuste and Bonhoeffer, 2004; Lippman and Dunaevsky, 2005; Bourne and Harris, 2007). Induction of the long-term potentiation (LTP) of synaptic transmission was shown to correlate with dynamic modifications in synapse morphology, and particularly with enlargement of the spine head, as well as with the changes in the proportion of different synaptic types (Desmond and Levy, 1986; Toni et al., 1999; 2001; Geinisman, 2000; Matsuzaki et al., 2004; Stewart et al., 2005; Park et al., 2006). The same kind of ultrastructural rearrangements was also observed after brief episodes of oxygen-glucose deprivation (OGD) which do not cause immediate cell damage but induce a lasting increase in excitatory postsynaptic potentials (EPSP) similar to the classic LTP.

Keywords: dendritic spines, synaptic plasticity, hippocampus, long-term potentiation, astroglia, presynaptic terminal, NMDA receptors, oxygen-glucose deprivation, electron microscopy, structural remodeling

References

  1. Araque A, Parpura V, Sanzgiri RP, Haydon PG. 1999. Tripartite synapses: glia, the unacknowledged partner. Trends in Neurosciences 22: 208-215. CrossRef PubMed
  2. Bourne J, Harris KM. 2007. Do thin spines learn to be mushroom spines that remember? Current Opinion in Neurobiology 17: 381-386. CrossRef PubMed
  3. Buchs PA, Stoppini L, Parducz A, Siklos L, Muller D. 1994. A new cytochemical method for the ultrastructural localization of calcium in the central nervous system. Journal of Neuroscience Methods 54: 83-93. CrossRef PubMed
  4. Bushong EA, Martone ME, Jones YZ, Ellisman MH. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. Journal of Neuroscience 22: 183-192. CrossRef PubMed PubMedCentral
  5. Desmond NL, Levy WB. 1986. Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. Journal of Comparative Neurology 253: 476-482. CrossRef PubMed
  6. Geinisman Y. 2000. Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cerebral Cortex 10: 952-962. CrossRef PubMed
  7. Haber M, Zhou L, Murai KK. 2006. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. Journal of Neuroscience 26: 8881-8891. CrossRef PubMed PubMedCentral
  8. Harris KM, Jensen FE, Tsao B. 1992. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. Journal of Neuroscience 12: 2685-2705. CrossRef PubMed PubMedCentral
  9. Haydon PG. 2001. GLIA: listening and talking to the synapse. Nature Reviews Neuroscience 2: 185-193. CrossRef PubMed
  10. Hirrlinger J, Hülsmann S, Kirchhoff F. 2004. Astroglial processes show spontaneous motility at active synaptic terminals in situ. European Journal of Neuroscience 20: 2235-2239. CrossRef PubMed
  11. Hsu KS, Huang CC. 1997. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus. British Journal of Pharmacology 122: 671-681. CrossRef PubMed PubMedCentral
  12. Jourdain P, Nikonenko I, Alberi S, Muller D. 2002. Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. Journal of Neuroscience 22: 3108-3116. CrossRef PubMed PubMedCentral
  13. Kovalenko T, Osadchenko I, Nikonenko A, Lushnikova I, Voronin K, Nikonenko I, Muller D, Skibo G. 2006. Ischemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapses. Hippocampus 16: 814-825. CrossRef PubMed
  14. Lippman J, Dunaevsky A. 2005. Dendritic spine morphogenesis and plasticity. Journal of Neurobiology 64: 47-57. CrossRef PubMed
  15. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. 2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429: 761-766. CrossRef PubMed PubMedCentral
  16. Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. 2006. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52: 817-830. CrossRef PubMed PubMedCentral
  17. Schipke CG, Kettenmann H. 2004. Astrocyte responses to neuronal activity. Glia 47: 226-232. CrossRef PubMed
  18. Slezak M, Pfrieger FW, Soltys Z. 2006. Synaptic plasticity, astrocytes and morphological homeostasis. Journal of Physiology (Paris) 99: 84-91. CrossRef PubMed
  19. Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallérac GM, Kraev IV, Rodriguez JJ. 2005. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. European Journal of Neuroscience 21: 3368-3378. CrossRef PubMed
  20. Stoppini L, Buchs PA, Muller D. 1991. A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods 37: 173-182. CrossRef PubMed
  21. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402: 421-425. CrossRef PubMed
  22. Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, Muller D. 2001. Remodeling of synaptic membranes after induction of long-term potentiation. Journal of Neuroscience 21: 6245-6251. CrossRef PubMed PubMedCentral
  23. Volterra A, Meldolesi J. 2005. Astrocytes, from brain glue to communication elements: the revolution continues. Nature Reviews Neuroscience 6: 626-640. CrossRef PubMed
  24. Yuste R, Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Reviews Neuroscience 5: 24-34. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2024-2025.