Українська English

BOOK REPOSITORY

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

The Book and Monograph Repository of the Bogomoletz Institute of Physiology NAS of Ukraine is an electronic archive dedicated exclusively to scientific books, monographs, and other fundamental works authored by the Institute’s researchers.

Our repository is designed to:

  • Provide open access to scientific knowledge
  • Preserve and promote scientific heritage
  • Support researchers, educators, and students in their studies
Browse, download, and use scientific publications for your research!

O. HRYSHCHENKO, S. HUKE, F. BAUDENBACHER, J.D. POTTER, B.C. KNOLLMANN (2020) 'Ca2+ SENSITIZING TROPONIN T MUTATIONS LINKED TO HYPERTROPHIC CARDIOMYOPATHY INCREASE APPARENT CYTOSOLIC Ca2+ BINDING' in O.A. Krishtal, E.A. Lukyanetz (Eds.), ESSAYS ON NEUROPHYSIOLOGY BY PLATON KOSTYUK AND HIS STUDENTS, AKADEMPERIODYKA, pp. 217-222


Ca2+ SENSITIZING TROPONIN T MUTATIONS LINKED TO HYPERTROPHIC CARDIOMYOPATHY INCREASE APPARENT CYTOSOLIC Ca2+ BINDING

O. HRYSHCHENKO1, S. HUKE2, F. BAUDENBACHER3, J.D. POTTER4, B.C. KNOLLMANN2

  1. Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
  2. Vanderbilt University, Division of Clin Pharmacology, Nashville, TN, USA
  3. Vanderbilt University, Institute for Integrative Biosystems Research and Education (VIIBRE), Nashville, TN, USA
  4. University of Miami, Molecular and Cellular Pharmacology, Miami, FL, USA
DOI: https://doi.org/10.15407/biph.books.EssNeur.217


Abstract

In intact contracting myocytes, the cytosolic free Ca²⁺ concentration ([Ca²⁺]free) varies dynamically and is determined by the sarcolemmal and trans-sarcoplasmic reticulum Ca²⁺ fluxes, the binding kinetics to Ca²⁺ ligands in the cytosol (Ca²⁺ buffering), and, to a lesser extent, by mitochondrial Ca²⁺ fluxes (Shannon and Bers, 2004; Bers, 2001). Major Ca²⁺ binding ligands are the myofilament protein Troponin C (TnC; about 50% of fast Ca²⁺ binding during a typical heartbeat), the sarcoplasmic reticulum (SR) Ca²⁺ ATPase (SERCA), and binding sites along the sarcolemmal membrane which remain to be identified (Bers, 2001; Fabiato, 1983). Additional Ca²⁺ is bound by slow Ca²⁺ buffering sites (Shannon and Bers, 2004). However, these high-affinity Ca²⁺/Mg²⁺ binding sites are largely saturated with Mg²⁺ during diastole (Robertson et al., 1981). Other high-capacity, low-affinity buffers (e.g., ATP, creatine phosphate) in aggregate also significantly contribute to Ca²⁺ buffering (Bers, 2001).

Keywords: calcium buffering, troponin T mutations, hypertrophic cardiomyopathy, excitation-contraction coupling, ventricular arrhythmias, sarcoplasmic reticulum, sodium-calcium exchanger, myofilament Ca2+ sensitivity, cytosolic Ca2+ transients, cardiac electrophysiology

References

  1. Shannon TR, Bers DM. 2004. Integrated Ca²⁺ management in cardiac myocytes. Ann N Y Acad Sci 1015: 28-38. CrossRef PubMed
  2. Bers DM. 2001. Excitation-Contraction Coupling and Cardiac Contractile Force. 2nd ed. Dordrecht: Kluwer Academic Publishers. CrossRef
  3. Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245(1): C1-C14. CrossRef PubMed
  4. Robertson SP, Johnson JD, Potter JD. 1981. The time-course of Ca²⁺ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca²⁺. Biophys J 34(3): 559-569. CrossRef PubMed
  5. Knollmann BC, Potter JD. 2001. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. Trends Cardiovasc Med 11(5): 206-212. CrossRef PubMed
  6. Mope L, McClellan GB, Winegrad S. 1980. Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol 75(3): 271-282. CrossRef PubMed PubMedCentral
  7. Wendt IR, Stephenson DG. 1983. Effects of caffeine on Ca²⁺-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch 398(3): 210-216. CrossRef PubMed
  8. Berlin JR, Bassani JW, Bers DM. 1994. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J 67(4): 1775-1787. CrossRef PubMed
  9. Kijima Y, Ogunbunmi E, Fleischer S. 1991. Drug action of thapsigargin on the Ca²⁺ pump protein of sarcoplasmic reticulum. J Biol Chem 266(34): 22912-22918. CrossRef PubMed
  10. Diaz ME, Trafford AW, Eisner DA. 2001. The effects of exogenous calcium buffers on the systolic calcium transient in rat ventricular myocytes. Biophys J 80(4): 1915-1925. CrossRef PubMed
  11. Day SM, Coutu P, Wang W, Herron T, Turner I, Shillingford M, et al. 2008. Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca²⁺ buffering action. Physiol Genomics 33(3): 312-322. CrossRef PubMed
  12. Trafford AW, Diaz ME, Eisner DA. 1999. A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pflügers Arch 437(3): 501-503. CrossRef PubMed
  13. Knollmann BC, Blatt SA, Horton K, de Freitas F, Miller T, Bell M, et al. 2001. Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem 276(13): 10039-10048. CrossRef PubMed
  14. Hernandez OM, Szczesna-Cordary D, Knollmann BC, Miller T, Bell M, Zhao J, et al. 2005. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy affect muscle contraction in transgenic mice and reconstituted human cardiac fibres. J Biol Chem 280(44): 37183-37194. CrossRef PubMed
  15. Miller T, Szczesna D, Housmans PR, Zhao J, de Freitas F, Gomes AV, et al. 2001. Abnormal contractile function in transgenic mice expressing a familial hypertrophic cardiomyopathy-linked troponin T (I79N) mutation. J Biol Chem 276(6): 3743-3755. CrossRef PubMed
  16. Solaro RJ. 1995. Troponin C-troponin I interactions and molecular signalling in cardiac myofilaments. Adv Exp Med Biol 382: 109-115. CrossRef PubMed
  17. Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, et al. 2003. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca²⁺-dependent action potential remodeling. Circ Res 92(4): 428-436. CrossRef PubMed
  18. "Baudenbacher F, Schober T, Pinto JR, Sidorov VY, Hilliard F, Solaro RJ, Potter JD, Knollmann BC. 2008. Myofilament Ca²⁺ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest 118(12): 3893-3903. CrossRef PubMed PubMedCentral
  19. Solaro RJ. 1995. Troponin C-troponin I interactions and molecular signalling in cardiac myofilaments. Adv Exp Med Biol 382: 109-115. CrossRef PubMed
  20. Knollmann BC, Blatt SA, Horton K, de Freitas F, Miller T, Bell M, Housmans PR, Weissman NJ, Morad M, Potter JD. 2001. Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem 276(13): 10039-10048. CrossRef PubMed
  21. Hernandez OM, Szczesna-Cordary D, Knollmann BC, Miller T, Bell M, Zhao J, Sirenko SG, Diaz Z, Guzman G, Xu Y, Wang Y, Kerrick WG, Potter JD. 2005. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy affect muscle contraction in transgenic mice and reconstituted human cardiac fibers. J Biol Chem 280(44): 37183-37194. CrossRef PubMed
  22. Trafford AW, Diaz ME, Eisner DA. 1999. A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pflügers Arch 437(3): 501-503. CrossRef PubMed
  23. Miller T, Szczesna D, Housmans PR, Zhao J, de Freitas F, Gomes AV, Culbreath L, McCue J, Wang Y, Xu Y, Kerrick WG, Potter JD. 2001. Abnormal contractile function in transgenic mice expressing a familial hypertrophic cardiomyopathy-linked troponin T (I79N) mutation. J Biol Chem 276(6): 3743-3755. CrossRef PubMed
  24. Wendt IR, Stephenson DG. 1983. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch 398(3): 210-216. CrossRef PubMed
  25. Berlin JR, Bassani JW, Bers DM. 1994. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J 67(4): 1775-1787. CrossRef PubMed
  26. Kijima Y, Ogunbunmi E, Fleischer S. 1991. Drug action of thapsigargin on the Ca²⁺ pump protein of sarcoplasmic reticulum. J Biol Chem 266(34): 22912-22918. CrossRef PubMed
  27. Diaz ME, Trafford AW, Eisner DA. 2001. The effects of exogenous calcium buffers on the systolic calcium transient in rat ventricular myocytes. Biophys J 80(4): 1915-1925. CrossRef PubMed
  28. Day SM, Coutu P, Wang W, Herron T, Turner I, Shillingford M, Lacross NC, Converso KL, Piao L, Li J, Lopatin AN, Metzger JM. 2008. Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca²⁺ buffering action. Physiol Genomics 33(3): 312-322. CrossRef PubMed
  29. Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M. 2003. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca²⁺-dependent action potential remodeling. Circ Res 92(4): 428-436. CrossRef PubMed
  30. Mope L, McClellan GB, Winegrad S. 1980. Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol 75(3): 271-282. CrossRef PubMed PubMedCentral

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2024-2025.