Українська English

BOOK REPOSITORY

Bogomoletz Institute of Physiology
National Academy of Sciences of Ukraine

The Book and Monograph Repository of the Bogomoletz Institute of Physiology NAS of Ukraine is an electronic archive dedicated exclusively to scientific books, monographs, and other fundamental works authored by the Institute’s researchers.

Our repository is designed to:

  • Provide open access to scientific knowledge
  • Preserve and promote scientific heritage
  • Support researchers, educators, and students in their studies
Browse, download, and use scientific publications for your research!

M.K. MALYSHEVA, L.I. KOLCHYNSKA (2020) 'DETERMINATION AND REGULATION OF THE CALPAIN ACTIVITY IN SUBCELLULAR FRACTIONS OF THE RAT BRAIN' in O.A. Krishtal, E.A. Lukyanetz (Eds.), ESSAYS ON NEUROPHYSIOLOGY BY PLATON KOSTYUK AND HIS STUDENTS, AKADEMPERIODYKA, pp. 121-127


DETERMINATION AND REGULATION OF THE CALPAIN ACTIVITY IN SUBCELLULAR FRACTIONS OF THE RAT BRAIN

M.K. MALYSHEVA, L.I. KOLCHYNSKA

    Bogomoletz Institute of physiology NAS of Ukraine, Kyiv, Ukraine
DOI: https://doi.org/10.15407/biph.books.EssNeur.121


Abstract

Despite the considerable progress in the understanding of the molecular mechanisms of neurosecretion achieved last years, many aspects of this problem remain unsolved. At present, release of neurotransmitter from the synaptic terminal (exocytosis) is considered as a complex multistep calcium-dependent process; the main steps of this process are "docking", i.e. close rapprochement of the synaptic vesicles with the cytoplasmic side of the membrane of the synaptic terminal, preparation of the vesicles for fusion, and fusion itself, the unification of the synaptic vesicle membranes and presynaptic membrane with pore formation, followed by mediator eflux to the synaptic cleft (Sollner et al., 1993; Sudhof, 1995). It is known that many proteins, membrane or cytoplasmic, are involved in all stages of the neurosecretory processes. Various enzymes, including protein kinases, phosphatases, phospholipases and proteinases.

Keywords: neurosecretion, synaptic vesicles, calcium signaling, calpain, exocytosis, membrane fusion, proteinases, lipid rafts, phospholipids, neuronal pathology.

References

  1. Babiychuk E, Monastyrskaya K, Burkhard, Wray S, Draeger A. 2002. Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts. FASEB Journal 16: 1177-1184. CrossRef PubMed
  2. Banik N, Chakrabarti A, Hogan E. 1992. Effects of detergents on Ca-activated neural proteinase (calpain) in neural and non-neural tissue: a comparative study. Neurochemical Research 17: 797-802. CrossRef PubMed
  3. Brown D, London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. Journal of Biological Chemistry 275: 17221-17224. CrossRef PubMed
  4. Chakrabarti A, Dasgupta S, Banik N, Hogan E. 1990. Regulation of the calcium-activated neutral proteinase (CANP) of bovine brain by myelin lipids. Biochimica et Biophysica Acta 1038: 195-198. CrossRef
  5. Chan S, Mattson M. 1999. Caspase and calpain substrates: roles in synaptic plasticity and cell death. Journal of Neuroscience Research 58: 167-190. CrossRef
  6. De Camilli P. 1995. Molecular mechanisms in synaptic vesicle recycling. FEBS Letters 369: 3-12. CrossRef PubMed
  7. Fernandez-Montalvan A, Assfalg-Machleidt I, Pfeiler D, Fritz H, Jochum H, Machleidt W. 2006. μ-Calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca-activated conformation. Journal of Biological Chemistry 387: 617-627. CrossRef PubMed
  8. Garret C, Cottin P, Dufourcq J, Ducastaing A. 1988. Evidence for a Ca-independent association between calpain II and phospholipid vesicles. FEBS Letters 227: 209-214. CrossRef PubMed
  9. Goll D, Thompson V, Li H, Wei W, Cong J. 2003. The calpain system. Physiological Reviews 83: 731-801. CrossRef PubMed
  10. Goudenege S, Dargelos E, Claverol S, Bonneu M, Cottin P, Poussard S. 2007. Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation. Proteomics 7: 3289-3298. CrossRef PubMed
  11. Haim K, Ben-Aharon I, Shalgi R. 2006. Expression and immunolocalization of the calpain-calpastatin system during parthenogenetic activation and fertilization in the rat egg. Reproduction 131: 35-43. CrossRef PubMed
  12. Hilfiker S, Pieribone V, Czernik A, Kao H, Augustine G, Greengard P. 1999. Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354: 269-279. CrossRef PubMed PubMedCentral
  13. Johnson G, Guttman R. 1997. Calpains: intact and active? BioEssays 19: 1011-1018. CrossRef PubMed
  14. Kondo H, Rabouille C, Newman R, Levine T, Pappin D, Freemont P, Warren G. 1997. p47 is a cofactor for p97-mediated membrane fusion. Nature 388: 75-78. CrossRef PubMed
  15. Morford L, Forrest K, Logan B, Overstreet L, Goebel J, Brooks W, Roszman T. 2002. Calpain II colocalizes with detergent-insoluble rafts on human and Jurkat T-cells. Biochemical and Biophysical Research Communications 295: 540-546. CrossRef PubMed
  16. Nixon R. 1989. Calcium activated neutral proteinases as regulators of cellular function: implications for Alzheimer's disease pathogenesis. Annals of the New York Academy of Sciences 568: 198-208. CrossRef PubMed
  17. Nuzzi P, Senetar M, Huttenlocher A. 2007. Asymmetric localization of calpain 2 during neutrophil chemotaxis. Molecular Biology of the Cell 18: 795-805. CrossRef PubMed PubMedCentral
  18. Pontremoli S, Melloni E, Sparatore B, Salamino F, Michetti M, Sacco O, Horecker B. 1985. Role of phospholipids in the activation of the Ca-dependent neutral proteinase of human erythrocytes. Biochemical and Biophysical Research Communications 129: 389-395. CrossRef PubMed
  19. Saido T, Shibata M, Takenawa T, Murofushi H, Suzuki K. 1992. Positive regulation of μ-calpain action by polyphosphoinositides. Journal of Biological Chemistry 267: 24585-24590. CrossRef PubMed
  20. Sollner T, Bennett M, Whiteheart S, Scheller R, Rothman J. 1993. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409-418. CrossRef PubMed
  21. Südhof T. 1995. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375: 645-653. CrossRef PubMed
  22. Takeuchi K, Saito K, Nixon R. 1992. Immunoassay and activity of calcium-activated neutral proteinase (mCANP): distribution in soluble and membrane-associated fractions in human and mouse brain. Journal of Neurochemistry 58: 1526-1532. CrossRef PubMed
  23. Tsyvkin V, Prudnikov I, Kastrykina T, Kolchinskaya L, Malysheva M. 2002. Modification of the membrane components of synaptosomes and the fusion process. Neurophysiology 34: 260-261. CrossRef
  24. Tullio R, Passalaqua M, Averna M, Salamino F, Melloni E, Pontremoli S. 1999. Changes in intracellular localization of calpastatin during calpain activation. Biochemical Journal 343: 467-472. CrossRef PubMed PubMedCentral
  25. Vosler P, Brennan C, Chen J. 2008. Calpain-mediated signalling mechanisms in neuronal injury and neurodegeneration. Molecular Neurobiology 38: 78-100. CrossRef PubMed PubMedCentral
  26. Yancey P, Rodrigueza W, Kilsdonk E, Stoudt G, Johnson W, Phillips M, Rothblat G. 1996. Cellular cholesterol efflux mediated by cyclodextrins: demonstration of kinetic pools and mechanism of efflux. Journal of Biological Chemistry 271: 16026-16034. CrossRef PubMed
  27. Zimmerman U, Malek S, Liu L, Li H. 1999. Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells. IUBMB Life 48: 453-458. CrossRef PubMed

© National Academy of Sciences of Ukraine, Bogomoletz Institute of Physiology, 2024-2025.