LIPID DROPLETS IN CALCIUM-INDUCED STRUCTURE INTERACTIONS IN ADRENOCORTICOCYTES

L.M. KOVAL, O.N. YAVORSKA, E.A. LUKYANETZ Bogomoletz Institute of Physiology, Kyiv, Ukraine koval@biph.kiev.ua

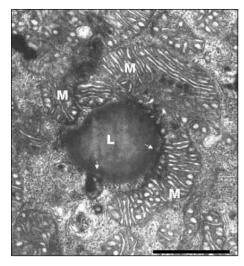
Olena Yavorska, a leading engineer at the same department, she has worked at the Institute of Physiology since 1971 (she graduated from the Shevchenko Kyiv State University), she is a coauthor of numerous papers published in domestic and international journals. They carried out together with Prof. E. Lukianets studies of the ultrastructure and cytochemistry of the nervous and chromaffin tissue culture as well as identification of cytoplasmic and membrane structures providing cell excitability.

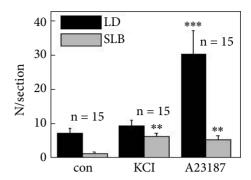
Dr. Larysa Koval, candidate of biological sciences, senior scientific researcher of the department of General Physiology of Nervous System, has worked at Bogomoletz Institute of Physiology NASU since 1968 (she graduated from Shevchenko Kyiv State University). She is a laureate of O. Bogomoletz award in the field of theoretical biology and medicine, co-author of the monograph "The structural patterns of neurons in culture conditions", and the author of about 100 papers published in foreign and domestic journals.

Information about prof. E.A. Lukyanetz is described on p. 167.

Introduction

Recently it has been shown that, similarly to other secretory cells, intracellular calcium signaling is the main mechanism which is activated in response to the external stimulus and provides a steroidogenesis in adrenocortical cells (Aptel et al., 1996; Brandenburger et al., 1996; Cherradi et al., 1998; Rossier, 1997). However, in comparison to adrenocorticocytes from zona glomerulosa (ZG), in the cells from zona fasciculata (FZ), the role of Ca²⁺ entering through Ca²⁺ channels in steroidogenesis is unclear. Thus, it was shown that cAMP cascade rather than Ca²⁺ signaling is involved in steroid hormone release in FZ cells (Cote et al., 2001; Coyne et al., 1996), despite the expression of voltage-gated calcium channels (T-and L-type) in these cells (Barbara and Takeda, 1995; Schrier et al., 2001).


A very important feature of adrenocortical cells is the fact that enzymes participating in synthesis of steroid hormones are located in different compartments of the cell (Ishimura and Fujita, 1997). Thus, conversion of cholesterol to pregnenolone and the final stages of corticosteroid synthesis occur in mitochondria and involve cytochromes P450 (among them P450scc cholesterol side-chain cleavage cytochrome, product of the CYP11A gene) located on the internal surface of mitochondrial membrane (Ishimura and Fujita, 1997), whereas the intermediate stages resulting in synthesis of deoxycortisol or deoxycorticosterone from pregnenolone occur in the membranes of endoplasmic reticulum (ER) (Kim et al., 1997). Recently the data appeared that other organoid members may participate in this process. in addition to these two main structures.


The purpose of our experiments was to establish the role of Ca²⁺ signaling in morphological ultrastructural changes connected with steroidogenesis of organelles in adrenocortical cells from zona fasciculata/reticularis.

Methods

Cell culturing and electron microscopy. A 4-day culture of adrenocortical cells from bovine adrenals was used for electron microscopy researches. The detailed description of feeding such culture was described previously in details (Koval et al., 2000; Koval et al., 2001). Cells were grown on polyornithine-covered acklar plates and then were fixed by 2.5 % glutaraldehyde in 0.1 M phosphate buffer. After triple washing, they cells were treated with 1 % OsO₄ solution for 1 h. In separate experiments, the cells were loaded by Ca²⁺ via depolarization by 2 s exposure to 100mM KCl or pretreatment with 10 μ M A23187 (calcium ionophore) in Ca²⁺-free solution followed by 2 s incubation in Ca²⁺-containing medium, and then were post-fixed. The ultrastructure of cells was examined on ultrathin sections (50÷60 nm thickness) contrasted by uranylacetate under an electronic microscope JEM-100 CX (JEOL, Japan). Preparations were analyzed at ×6,700÷×40,000 magnification. The morphological analysis was carried out with using "KSlite" (Kontron Electronik, Germany) software. The values are given as mean \pm S.E.M. Statistical significance analysis of differences was performed using ANOVA analysis.

Fluorescent $[Ca^{2+}]_i$ measurements. Intracellular Ca^{2+} was monitored from individual cells with a Ca^{2+} photometric system (TILL Photonic, USA). This method is described elsewhere (Lukyanetz, 2001; Lukyanetz and Neher, 1999). Briefly, cells were loaded with $1\div 2~\mu M$ fura-2 acetoxymethylester (fura-2AM; Molecular Probes, Eugene, OR, USA) for 30 min and subsequently washed for 30 min. Then they were transferred to a recording chamber where recordings at pair wavelenghts of 360 (F1) and 380nm (F2) were collected every 200 ms. The fluorescence signals were examined on an inverted microscope (Olympus IX70, Japan) using a dry $\times 40$ objective (NA = 0.55), attached with photometric devices from TILL Photonics, USA. In all experiments, the signals were averaged through-

Fig. 2. Ca²⁺-induced increase of steroidogenic activity in FZ/ZR cells. The mean values of the number of lipid droplets (black bars) and SLB (gray bars) per section in different experimental conditions are presented

Fig. 1. Ca^{2+} -induced interaction of lipid droplets with multiple mitochondria in adrenocortical cell from FZ/ZR zone. Cell was exposed to 100 mM KCl for 2 min before fixation. One can see a lipid droplet (L) located at the center of cell, enveloped by several mitochondria (M). White arrows show SLB in the places of contacts. Scale bar demonstrates 1 μ m

out the cell. Data are presented as signals ratio (F1/F2). The excitation light waves were adjusted by monochromator Polychrome IV (TILL Photonics, USA) added with an amplifier EPC9 and software Pulse/XChart (HEKA Electronics, Germany).

Results

Previous studies of adrenocortical cells have shown that cells from different zones of adrenal cortex differ in their mitochondria, lipid droplets, endoplasmic reticulum (ER) and also in the presence of pigment lipofuscin granules (PLG). In our experiments the ultrastructural analysis of cultured cells from dissociated tissue of cortex of adrenal glands has shown two types of adrenocortical cells differing in mitochondrial cristae and in the presence of lipofuscin granules. One type of cells occurred much oftener and was characterized by large mitochondria with characteristic tubulo-vesicular crista (Fig. 1). According to these properties, such cells belong to the fascicular zone (FZ) (Bornstein et al., 1992), whereas the other type of cells was rarely observed in our experiments and was characterized by mitochondria with tubulo-lamellar cristae characteristic for the cells from the zona glomerulosa (ZG) (Belloni et al., 1987). Since in our experiments we observed mainly adrenocortocytes from FZ and ZR, the next data will concern only FZ/ZR cell types.

To show that Ca^{2+} can be involved in steroidogenesis in FZ/ZR cells, primarily we used microfluorescent method to measure intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$) by using Fura-2 dye. We compared the action of adrenocorticotropic hormone (ACTH) with activation of voltage-operated Ca^{2+} channels by KCl-in-

duced membrane depolarization. We found that short application of 100mM KCl evoked pronounced Ca²⁺ transient pointing that in this cell type activation of Ca²⁺ channels induces prominent Ca²⁺ influx into the cell. Application of 2 μ M ACTH evoked a similar effect on the level of intracellular Ca²⁺ ([Ca²⁺]_i) in the same cell. These findings allowed us to suppose that Ca²⁺ ions are really involved in the steroidogenesis in this type of adrenocortical cells.

Morphological experiments showed that both depolarization of the cells by 100 mM KCl inducing Ca²⁺ influx into the cell via voltage-operated Ca²⁺ channels and Ca²⁺ ionophore A23187 (10µM) transferring Ca²⁺ into the cell induced morphological changes in the ultrastructure of adrenocortical cells. It was possible to observe droplets tightly contacting together and with other organels, Fig. 1. It has been proved that the lipid droplets contacted together frequently via specialized structures which we called the "spiral-like bodies" (SLB). After exposing the cells to Ca²⁺ inductors, the tight interactions of lipid droplets with mitochondria, sometimes with two and more, were remarkable (Fig. 1). The contacts between mitochondria and droplets could be also observed in control. The droplets preserved their electron dark contents at the periphery while the center remained electron lighter. The lipid droplets contacted with mitochondria frequently via specialized SLB, located on the droplets (white arrows). The space expansion between mitochondrial cristae and rounding of mitochondrial vesicles were observed after excitation. In the place of their contact with droplets, the vesicular cristae concentrated and lined up along the contacts with similar distances between each other. The mitochondrial vesicles were oriented perpendicularly to the contacts, pointing on the steroidigenesis in process.

The SLB represented the electron light rounded structures with dark core located always on the surface of the droplets, and they looked like as electron-dense spiral body included in the electron-light pouch having a regular ovoid shape, Fig. 1 (white arrows). The mean diameter of the SLB equaled to 96 \pm 8.3nm (n=16). The SLB could be observed in control conditions, however after increase of Ca²⁺ in cell cytoplasm their number was remarkably increased by about 5 times after KCl stimulation and by about 4.4 times after A23187 exposition, Fig. 2.

The bar graph in Fig. 2 represents the mean number of lipid droplets (black bars) and SLB (gray bars) calculated per one section. Totally, 15 sections from different cells were analyzed. It was proved that in control conditions the number of lipid droplets per section was 7.13 ± 1.5 (n = 15), in the case of KCl it was 9.33 ± 1.64 (n = 15) and 30.33 ± 6.8 (n = 15) after A23187 treatment. As it can be seen, that number of lipid droplets was significantly increased after A23187 treatment (by about 4 times) whereas increase of the droplet number after KCl stimulation was statistically insignificant (Fig. 2). It should be noted that not all droplets contained SLB and as rule every droplet contained single SLB. However, it is necessary to bear in mind, that an appearance of SLB in the section (50 nm thickness) could depend on SLB location respecting to the section plan.

Discussion

From our experiments we concluded, that tight ultrastructural interactions between various intracellular structures significantly increased after Ca²⁺-induced priming of steroidogenesis in adrenocortical cells from zona fasciculata/reticularis. We observed the tight spatial contacts of lipid droplets with mitochondria and other organneles. The surface of lipid droplets contained the specialized morphological formations (SLB) in the contact sites with most of cases. We firstly describe these structures in steroidogenic cells. Some of the authors observed similar structures in lipid droplets, however they were mistakenly attributed to fixation artifacts. Our detailed inspection has shown that they really are the specialized structures. Besides, previously it was reported that similar formations were observed in lipid droplets from macrophage foam cells (Mc-Gookey and Anderson, 1983). These authors have reported whorls of bilayered membranes at specialized sites on the droplet surface, and provided evidence that these were the sites of core lipid hydrolysis by hormone-sensitive lipase (Brasaemle et al., 2000; Morimoto et al., 2000). This hydrolysis results in a surplus of envelope, which may then fold back upon itself (van Meer, 2001). Really, the fact of the increase of their number during cell excitation points on their role in steroidogenesis, since according to the existing data, Ca²⁺ can produce steroid hormone secretion in FZ/ZR cells (Capponi et al., 1988). Our statistical data have shown that the changes in the droplet's morphology were differentially influenced by KCl and the ionophore. Besides appearance of SLB was also significantly differed at two types of the way to increase an intracellular Ca²⁺, being very pronounced at KCl depolarization. The latter can reflect an importance of the way by which Ca²⁺ enter into the cell. Really, an increase of lipid droplets diameters occurred only after stimulation of Ca2+ channels due to membrane depolarization. These our observations can be explained with data obtained recently in electrophysiological experiments on adrenal glomerulosa cells (Rossier et al., 1996a; Rossier et al., 1996b). These authors have shown the direct functional link between T-type calcium channel activity and steroidogenesis in ZG cells. They suggested a model in which calcium entering the cell through these channels can be further funneled, resulting in the confinement of intracellular calcium signaling (Rossier, 1997). Such way, Ca2+ can reach directly the intracellular places where steroidogenesis occurs.

Therefore, in the case of Ca^{2+} ionophore, when Ca^{2+} influx is undirected, Ca^{2+} ions can not reach the places associating with the lipid droplet enlargement (may be located inside of some of the organelles). We can suppose that the specialized spiral-like structures (SLB) observed in our experiments, that were formed only in the places of contact between lipid droplets with other organelles can be related with similar systems providing transport of proteins and lipids during steroidogenesis in adrenocortical cells.

Acknowledgements. We would like to thank sincerely Prof. P.G. Kostyuk for possibility to fulfill scientific investigations in our country.

REFERENCES

- Aptel HB, Johnson EI, Vallotton MB, Rossier MF, Capponi AM (Demonstration of an angiotensin II-induced negative feedback effect on aldosterone synthesis in isolated rat adrenal zona glomerulosa cells. Mol Cell Endocrinol 119: 105-111.1996).
- Barbara JG, Takeda K (Voltage-dependent currents and modulation of calcium channel expression in zona fasciculata cells from rat adrenal gland. J Physiol 488 (Pt 3): 609-622. 1995).
- Belloni AS, Mazzocchi G, Mantero F, Nussdorfer GG (The human adrenal cortex: ultrastructure and base-line morphometric data. J Submicrosc Cytol 19: 657-668. 1987).
- Bornstein SR, Ehrhart-Bornstein M, Guse-Behling H, Scherbaum WA (Structure and dynamics of adrenal mitochondria following stimulation with corticotropin releasing hormone. Anat Rec 234: 255-262. 1992).
- Brandenburger Y, Kennedy ED, Python CP, Rossier MF, Vallotton MB, Wollheim CB, Capponi AM (Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 137: 5544-5551. 1996).
- Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C (The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta 1483: 251-262. 2000).
- Capponi AM, Rossier MF, Davies E, Vallotton MB (Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem 263: 16113-16117. 1988).
- Cherradi N, Brandenburger Y, Rossier MF, Capponi AM (Regulation of mineralocorticoid biosynthesis by calcium and the StAR protein. Endocr Res 24: 355-362. 1998).
- Cote M, Guillon G, Payet MD, Gallo-Payet N (Expression and regulation of adenylyl cyclase isoforms in the human adrenal gland. J Clin Endocrinol Metab 86: 4495-4503. 2001).
- Coyne MD, Wang G, Lemos JR (Calcium channels do not play a role in the steroid response to ACTH IN Y1 adrenocortical cells. Endocr Res 22: 551-556. 1996).
- Ishimura K, Fujita H (Light and electron microscopic immunohistochemistry of the localization of adrenal steroidogenic enzymes. Microsc Res Tech 36: 445-453. 1997).
- Kim YC, Ariyoshi N, Artemenko I, Elliott ME, Bhattacharyya KK, Jefcoate CR (Control of cholesterol access to cytochrome P450scc in rat adrenal cells mediated by regulation of the steroidogenic acute regulatory protein. Steroids 62: 10-20. 1997).
- Koval LM, Yavorskaya EN, Lukyanetz EA (Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells. Gen Comp Endocrinol 121:261-277.2001).
- Koval LM, Yavorskaya EN, Tokar SL, Lukyanetz EA (Ultrastructural properties of steroid vesicles and mitochondria in bovine adrenocortical cells. Neurophysiology (Kyiv) 32: 272-274, 2000).
- Lukyanetz EA (2001) Intracellular events during depolarization-induced exocytosis in chromaffin cells. In: Calcium Signalling, vol. 331 (Morad M, Kostyuk P, eds), pp 174-182 Amsterdam: IOS Press.

- Lukyanetz EA, Neher E (Different types of calcium channels and secretion from bovine chromaffin cells. Eur J Neurosci 11: 2865-2873. 1999).
- McGookey DJ, Anderson RG (Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 97: 1156-1168. 1983).
- Morimoto C, Kiyama A, Kameda K, Ninomiya H, Tsujita T, Okuda H (Mechanism of the stimulatory action of okadaic acid on lipolysis in rat fat cells. J Lipid Res 41: 199-204. 2000).
- Rossier MF (Confinement of intracellular calcium signaling in secretory and steroidogenic cells. Eur J Endocrinol 137:317-325.1997).
- Rossier MF, Burnay MM, Brandenburger Y, Cherradi N, Vallotton MB, Capponi AM (Sources and sites of action of calcium in the regulation of aldosterone biosynthesis. Endocr Res 22: 579-588. 1996a).
- Rossier MF, Burnay MM, Vallotton MB, Capponi AM (Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology 137: 4817-4826. 1996b).
- Schrier AD, Wang H, Talley EM, Perez-Reyes E, Barrett PQ (alpha1H T-type Ca²⁺ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol Cell Physiol 280: C265-C272. 2001).
- van Meer G (Caveolin, cholesterol, and lipid droplets? J Cell Biol 152: F29-F34. 2001).